ЛИТЕРАТУРА / КНИГИ

Начала Евклида


Мы мыслим три различные системы вещей: вещи первой системы мы называем точками и обозначаем A, B, C \dots

За определениями Евклид приводит постулаты (I post. 1-5):

  1. От всякой точки до всякой точки можно провести прямую.
# Ограниченную прямую можно непрерывно продолжать по прямой.
  1. Из всякого центра всяким раствором может быть описан круг.
# Все прямые углы равны между собой.
  1. Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых.
Наиболее интересен в аксиоматике Евклида последний, знаменитый пятый постулат. Среди других, интуитивно очевидных постулатов, он нарочито чужероден, его громоздкая формулировка закономерно вызывает некоторое чувство протеста и желание отыскать для него доказательство. Такие доказательства уже в древности пытались построить Птолемей и Прокл; а в Новое время из этих попыток развилась неевклидова геометрия. Следует отметить, что первые 28 теорем I книги относятся к абсолютной геометрии, то есть не опираются на V постулат.

За постулатами следуют аксиомы (I ax. 1-9), которые имеют характер общих утверждений, относящихся в равной мере как к числам, так и к непрерывным величинам:

  1. Равные одному и тому же равны и между собой.
# И если к равным прибавляются равные, то и целые будут равны.
  1. И если от равных отнимаются равные, то остатки будут равны.
# (И если к неравным прибавляются равные, то целые будут не равны.)
  1. (И удвоенные одного и того же равны между собой.)
# (И половины одного и того же равны между собой.)
  1. И совмещающиеся друг с другом равны между собой.
# И целое больше части.
  1. (И две прямые не содержат пространства.)
В скобки взяты аксиомы, принадлежность которых Евклиду Гейберг, автор классической реконструкции текста «Начал», счёл сомнительной. I post. 4 и 5 в ряде списков выступают как I ax. 10 и 11 соответственно.

За аксиомами следуют три теоремы, представляющие собой задачи на построение, давно вызывающие споры. Так I prop. 2 предлагает «от данной точки отложить прямую, равную данной прямой». Нетривиальность этой задачи состоит в том, что Евклид не переносит отрезок на прямую соответствующим раствором циркуля, полагая такую операцию недозволенной, и использует I post. 3 в неожиданно узком смысле.

При доказательстве I prop. 4, выражающего признак равенства треугольников, Евклид использует метод наложения, никак не описанный в постулатах и аксиомах. Все комментаторы отмечали эту лакуну, Гильберт не нашел ничего лучшего, как сделать признак равенства треугольников по трём сторонам (I prop. 8) аксиомой III-5 в своей системе. С другой стороны, постулат I post. 4 теперь принято доказывать, как это сделал впервые Хр. Вольф, у Гильберта это утверждение выводится из аксиом конгруэнтности.

Затем рассматриваются различные случаи равенства и неравенства треугольников; теоремы о параллельных прямых и параллелограммах; так называемые «местные» теоремы о равенстве площадей треугольников и параллелограммов на одном основании и под одной высотой. Заканчивается I книга теоремой Пифагора.

Обзор содержания книг II—XIII

II книга — теоремы так называемой «геометрической алгебры».

III книга — предложения об окружностях, их касательных и хордах, центральных и вписанных углах.

 


Комментарии

Добавить комментарий
Комментарий
Отправить